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Abstract. We present an algorithm for finding a minimum spanning tree where the costs are the sum
of two linear ratios. We show how upper and lower bounds may be quickly generated. By associating
each ratio value with a new variable in ‘image space,’ we show how to tighten these bounds by
optimally solving a sequence of constrained minimum spanning tree problems. The resulting iterative
algorithm then finds the globally optimal solution. Two procedures are presented to speed up the basic
algorithm. One relies on the structure of the problem to find a locally optimal solution while the other
is independent of the problem structure. Both are shown to be effective in reducing the computational
effort. Numerical results are presented.
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1. Introduction

The Minimum Spanning Tree problem is one of the fundamental problems in com-
binatorial optimization. It is the problem of finding a tree in a network that connects
every pair of nodes by one and only one elementary path such that some cost is
minimized. The applications are well known (see Lawler (1976) and references
therein).

Under a linear cost model, individual costs are imposed on every edge connect-
ing a pair of nodes and the cost of the tree is simply the sum of itsn− 1 edge costs
wheren is the number of nodes in the network. Under this cost model, the greedy
algorithm finds the MST in polynomial time. Camerini et al. (1988) review several
efficient implementations of the greedy algorithm. If, in addition to costs, there are
also weights associated with each edge, then we are faced with the problem of find-
ing a spanning tree that minimizes the cost of the tree divided by its weight. This
problem, termed the Minimum Ratio Spanning Tree (MRST) problem, was first
considered by Chandrasekaran (1977) who presented a polynomial-time algorithm
for its solution.

Extending this idea, Meggido (1979) showed that if a combinatorial optimiza-
tion problem admitted a polynomial-time algorithm under a linear cost model, then
the minimum cost to weight ratio problem could also be solved in polynomial time.
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Hashizume et al. (1987) applied Megiddo’s results to hard combinatorial problems.
They demonstrated that if the original (linear) problem had anε-approximate al-
gorithm, then the cost to weight ratio problem could also be solved to within the
same accuracy. Later, Radzik (1992) showed that Newton’s Method applied to
linear combinatorial optimization problems with a single ratio was strongly poly-
nomial when the underlying linear problem admitted a polynomial time algorithm.
More recently, Nagih (1996) investigated the use of Lagrangian decomposition in
solving general[0,1] cost-to-weight ratio problems with a specific application to
the knapsack problem.

In this paper, we generalize the MRST by considering an objective function that
is the sum of two ratios. More precisely, if we letni(x) anddi(x), for i = 1,2,
be the linear functions, then we wish to find a spanning tree,x that minimizes
z = ∑2

i=1 ni(x)/di(x). We term this problem theTwo Ratio Minimum Spanning
Tree(TRMST) problem.

The applications of this type of cost model are detailed in Schaible (1995)
and his extensive bibliography. Obviously, such a cost model arises when several
rates are to be simultaneously optimized. For example, Almogy and Levin (1969)
used multiple ratios in formulating a multistage stochastic optimization shipping
problem with a generalization given in Almogy and Levin (1971). Multiple rates
can also be used in a weighted average or when a compromise between two rates
is sought. For instance, if we letd2(x) = 1 then we are trading off relative and
absolute quantities. In this case it would be useful to consider a cost model such as
z = n1(x)/d1(x) + αn1(x) with α 6= 0. The current state of the art in this area is
reviewed in Schaible (1996).

For the TRMST, we make use of the algorithm developed by Falk and Paloc-
say (1992) to solve our problem. We develop their method within the context of
combinatorial problems. We show how to solve the subproblems used to bound
the optimal solution and develop an iterative algorithm for solving this problem.
In addition, we also present a new method for overcoming the problem of stalling.
Finally, computational results are presented.

Despite the success of solving combinatorial problems with a single ratio ob-
jective function, instances where two (or more) ratios form the objective function
have not been addressed. We believe that the minimum spanning tree problem with
more than one ratio in the objective function is at least NP-complete. We base this
belief on the fact that we require the exact solution to NP-hard subproblems to
improve upper and lower bounds on the problem. This we will show. Unlike the
single ratio version of the problem, there appears to be no necessary and sufficient
condition for optimality although a sufficient condition does exist. We do not ad-
dress the complexity issue here, but will explore this subject in depth in a later
paper.

The paper is organized as follows. Section 2 presents the notation and introduces
the minimal ratio spanning tree problem and the extension to two ratios. We also
show how upper and lower bounds can be quickly generated as well as presenting
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an obvious heuristic for finding a local optimum. Section 3 shows how these bounds
can be improved. The algorithm is detailed in Section 4 and applied to an example
problem. Computational results are then presented. Section 5 concludes the paper.

2. Preliminaries

The MRST problem is a network optimization problem defined on an undirected
network G(V,A) whereV denotes the set of vertices or nodes andA denotes
the set of edges or arcs connecting the nodes. The node set is indexed asV =
(1, . . . , n) and each of them = |A| edges is represented by a pair of nodes(i, j).

Let T denote the set of spanning trees in the network. Our decision variables are
xij = 1 if (i, j) is an edge of a particular tree and zero otherwise. The decision
variables will be represented by a tree’s incidence vectorx ≡ { xij = 1 | (i, j) ∈
τx } whereτx ∈ T is the tree corresponding tox.

2.1. THE MINIMUM RATIO SPANNING TREE PROBLEM

For each edge(i, j) in the network, we have a costaij , and a weightbij . The MRST
is then defined as

min
τx∈T

n(x)

d(x)
=
∑

(i,j)∈τx aij xij∑
(i,j)∈τx bij xij

. (1)

We assume that
∑

(i,j)∈τx bij xij > 0 for all τx ∈ T and
∑

(i,j)∈τx aij xij > 0 for
someτx ∈ T . As shown by Chandrasekaran (1977), when the denominator of the
MRST objective function is allowed to take on negative values, the problem is NP-
complete. One commonly used approach to solving ratio optimization problems is
to define a parametric version of the problem,

min
τx∈T

[ n(x)− δd(x) ] , (2)

then pick a real numberδ and evaluate

H(δ) = min
{[
n(x)− δd(x) ] ∣∣ τx ∈ T

}
. (3)

For a givenδ, this amounts to finding a minimal spanning treex with edge costs
n(x) − δd(x). By a theorem due to Dinklebach (1967), ifH(δ) = 0 for some
τx ∈ T , then r∗ = δ is the optimal value of the ratio objective function in the
MRST andx∗ = x is the optimal solution to the MRST. Newton’s method, outlined
in Figure 1 is used for solving the MRST. Radzik (1992) analyzes this algorithm
and shows that it requiresO(m2 log2m) iterations to find the optimum.
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Algorithm N : 1
begin: 2
δ← 0; 3
repeat 4
H(δ)← minτx∈T

[
n(x)− δd(x) ] ; 5

δ← n(x)/d(x); 6
until H(δ) = 0; 7
r∗ ← δ; 8
x∗ ← x; 9

end; 10
Figure 1. Algorithm N: Newton’s algorithm for the minimum ratio spanning tree problem.

2.2. MINIMUM SPANNING TREES WITH TWO RATIOS

In considering the problem with two ratios in the objective function, we introduce
an additional cost and weight assigned to each edge,cij anddij . Again, we assume
that

∑
(i,j)∈τx dij xij > 0 for all τx ∈ T , and

∑
(i,j)∈τx cij xij > 0 for someτx ∈ T .

The Two Ratio Minimum Spanning Tree problem is defined as

min
τx∈T

(
n1(x)

d1(x)
+ n2(x)

d2(x)

)
(4)

= min
τx∈T

(∑
(i,j)∈τx aij xij∑
(i,j)∈τx bij xij

+
∑

(i,j)∈τx cij xij∑
(i,j)∈τx dij xij

)
. (5)

To solve this problem it seems natural to form a parametric function to optimize
similar to the single ratio case, i.e.,

H(r) = min
τx∈T

2∑
i=1

(
ni(x)− ridi(x)

)
(6)

wherer = (r1, r2) are the values of the two ratios. The challenge in using the para-
metric form (6) is to find necessary and sufficient conditions for optimality perhaps
relying only on the value of the parametric equation, as attempted by Almogy and
Levin, or to supplement the parametric equation with additional information about
the solution space, as did Falk and Palocsay.

In the former case, it was posited thatx∗ is the optimal solution of, in this case
the TRMST, if and only ifri = ni(x

∗)/di(x∗), for i = 1, 2, solvesH(r) = 0.
By way of a counter-example presented by Falk and Palocsay, we know this is not
necessarily true. In the latter case, a sufficient condition for establishing whether
a solution satisfyingH(r) = 0 is optimal was found in Falk and Palocsay (1992)
and relies on knowledge of the surrounding solution space. Thus, the functionH(r)

cannot be used to guide the optimization to a globally optimal solution, but it can
be used to check a solution for optimality if lower and upper bounds are available.
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In the next section we show how to quickly generate upper and lower bounds
on the optimal value of the TRMST. Subsequently, we show how Lagrangian
relaxation can be used to construct subproblems that tighten these bounds.

2.3. EASY BOUNDS AND A HEURISTIC FOR THE TRMST

Consider finding the MRST with respect to some ratioi, for i = 1,2 in the
TRMST. That is, find

uii = min
τx∈T

ni(x)

di(x)
, for i = 1,2. (7)

The valueuii can be no larger than its associated ratio’s value in the optimal
solution of the TRMST. Thus, we have

flo =
2∑
i=1

uii 6 min
τx∈T

2∑
i=1

(
ni(x)

di(x)

)
(8)

andflo is a lower bound on the optimal value of the TRMST. Ifτ ∗x is an optimal
solution of the TRMST, then we also have

uii 6
ni(x

∗)
di(x

∗)
, for i = 1,2. (9)

For each solution of (7) we also recover a feasible solution,xi, from which we
compute upper bounds

f iup = ui1+ ui2 =
2∑
j=1

(
nj (x

i)

dj (xi)

)
, for i = 1,2. (10)

For the best upper bound, we select

fup = min
[
f 1

up, f
2
up

]
(11)

and record the tree associated withfup asTup.

A simple exchange heuristic can be used in hopes of improvingfup. Consider
the list of edges not inTup. Repeatedly, swap each of thesem − n + 1 edges into
Tup. This creates a cycle of at mostn edges. Break this cycle by choosing an edge
to remove that yields the greatest reduction in the value offup and record the new
value offup and its associated tree asTup. If no such edge exists, the swapped-in
edge is removed and the procedure continues. There areO(m) potential replace-
ment edges for each of then − 1 edges inTup. Thus, the exchange heuristic takes
O (m(n− 1)) time. We call this HeuristicS.
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3. Improved Bounds

If the previously computed upper and lower bounds coincide, then we know the
solution associated with the upper bound is an optimal solution to the TRMST.
More than likely, this will not be the case and a method is needed to improve
the bounds. If we can generate a sequence of non-decreasing lower bounds and
non-increasing upper bounds then we can drive to the optimal solution.

To develop this idea, suppose we have an optimal solution to the TRMST de-
noted byx∗ with r∗1 = n1(x

∗)/d1(x
∗) andr∗2 = n2(x

∗)/d2(x
∗). Clearly,x∗ is an

optimal solution to the TRMST if and only if it is also the optimal solution to one
of

minτx∈T ni(x)/di(x)

s.t. nj (x)/dj (x) = r∗j
(i, j) ∈ [1,2] andi 6= j.

(12)

Of course, we do not know the optimal solution to the TRMST. But suppose we
relax the equality constraint in (12) to an inequality and replace its right hand side
by an upper bound̂rj > r∗j . Then the solution to

minτx∈T ni(x)/di(x)

s.t. nj (x)/dj (x) 6 r̂j
(i, j) ∈ [1,2] andi 6= j

(13)

will yield a lower bound solution̂xi such that

uii 6 ni(x̂i )/di(x̂i) 6 r∗i for i = 1,2. (14)

Indeed, we can view (7) as the problem (13) with the right hand side set to+∞.
Because (13) does not exclude the optimal point in the TRMST andx̂i is feasible
to the TRMST, we have

r∗1 + r∗2 6
n1(x̂

i)

d1(x̂i )
+ n2(x̂

i)

d2(x̂i)
6 fup for i = 1,2. (15)

Regrettably, the problem (13) is NP-hard (Aggarwal et al., 1982). Nevertheless,
algorithms for solving these types of problems when the objective function is lin-
ear are well known (Handler and Zang, 1980; Aggarwal et al., 1982) and quite
successful in practice. Our strategy is to fix the value of one ratio at a time and
solve the resulting constrained problems to optimality.

Thus, we end up with two subproblems to solve:

p1 : minτx∈T n1(x)/d1(x)

s.t. : n2(x)/d2(x) 6 r2
and

p2 : minτx∈T n2(x)/d2(x)

s.t : n1(x)/d1(x) 6 r1
(16)

wherer1 andr2 are fixed ahead of time at appropriate values. Upon solution, these
two problems yield lower bounds on ratio 1 and ratio 2 which are not inferior to
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those given by (7) and their sum, a lower bound on the optimal solution of the
TRMST. Denoting the solution of these subproblems byx1andx2 respectively, a
potentially improved upper bound on the TRMST is

fup = min

[
2∑
i=1

ni(x
1)

di(x1)
,

2∑
i=1

ni(x
2)

di(x2)

]
(17)

and a potentially improved lower bound on the TRMST is

flo = n1(x
1)/d1(x

1)+ n2(x
2)/d2(x

2). (18)

Clearly, if fup = flo, the current solution is optimal.
We now need a systematic way of setting the right hand side values in the

subproblems such that optimal solution point is not excluded yet we narrow the
search space. We address this topic in the next section using the ideas from Falk
and Palocsay (1992) and their image space algorithm to facilitate this process.

3.1. SETTING THE PARAM ETERS

Suppose we enumerated all the spanning trees onG and recorded all the values for
r1 andr2 thus forming a setR. Formally, we have

R =
{
(r1, r2) | r1 = n1(x)

d1(x)
, r2 = n2(x)

d2(x)
; ∀τx ∈ T

}
. (19)

Thus, each spanning treeτx on G maps non-uniquely to one pointr = (r1, r2).
By plotting r1 againstr2, we have a solution space in which the linear objective
function r1 + r2 can be minimized. In essence, we wish to solve the optimization
problem

minτx∈T r1+ r2
s.t. : n1(x)/d1(x) 6 r1

n2(x)/d2(x) 6 r2
(20)

by iteratively descending along each axis ofR using the subproblems (16). How far
we descend at each step is, in part, a function of right hand sides of the subproblems
(16) and these must be chosen so that the subproblems are feasible and do not
exclude the optimal solution to the TRMST. This is accomplished by constructing
a triangle inR within which the optimal solution point must lie. The vertices of
this triangle give us a way to iteratively set the right hand sides of (16) and thus
improve the bounds.

To construct this triangle, start at the point corresponding to the initial lower
bound (u11, u22) and draw a vertical line through the pointu11, followed by a
horizontal line through the pointu22. The isovalue-contourr1+ r2 = fup intersects
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these two lines yielding a triangle inR. The linefup = r1+r2 intersects the vertical
line at the point

(l1, l2) = (u11, fup− u11) (21)

and the horizontal line at the point

(v1, v2) = (fup− u22, u22). (22)

By construction, the resulting triangular region is guaranteed to contain the optimal
solution, and eitherv or l is feasible.

The feasible solution corresponding tofup forms one acute vertex of the tri-
angle. The other acute vertex is generally not feasible but we will use this point to
set the right hand side in the constrained problems. In particular, choose

r1 = v1 = fup− u22 and r2 = l2 = fup− u11. (23)

To see how this works, assume without loss of generality, that the current upper
bound is ratio 1, that is,u11 + u12 < u21 + u22. This means that problemp1 is
immediately solved sincel1 was generated by minimizing the first ratio. Solving
problemp2 excludes the point(u21, u22) and so we must have

u22 6 z∗(p2) 6 r∗2 . (24)

Thus, the lower bound on ratio 2 (and hence, on the objective function of the
TRMST) does not deteriorate and in general, the search space is narrowed. Note
that the upper bound may also improve. Figure 2 illustrates these ideas.

Given the three points of the initial triangle, we can check whether or not the
feasible point is optimal by invoking the sufficient condition given in Falk and
Palocsay (1992). Informally, the condition is as follows: Without loss of generality,
let l = (u11, u12) be our feasible solution so thatfup = u11+u12. The lower bound
is the pointu = (u11, u22)with flo = u11+u22. The pointv is as previously defined.
Then ifH(l) = 0 and H(u) >0 and H(v) >0, we know thatr∗ = l = (u11, u12)

is the optimal solution since it is the only feasible point in the triangle (due to the
concavity ofH ).

3.2. SOLVING THE CONSTRAINED SUBPROBLEMS

As proved in Aggarwal et al. (1982), the MST problem with a single side constraint
is NP-hard, hence in theory, difficult to solve. We wish to solve the subproblems
using Lagrangian relaxation and this requires us to form the Lagrangian Dual for
the subproblems (16). The use of this strategy here is justified by the results of
Bitran and Magnanti (1976).

Bitran and Magnanti considered the following parametric version of an arbitrary
fractional program:

min
[
n(x)− δd(x) | x ∈ F ] (25)
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Figure 2. Bounding the solution space. Dashed triangle shows the narrowed search space
resulting from solving a constrained subproblem. Superscripts indicate successive iterations.

whereF = {x ∈ X ⊆ Rm, g(x) 6 0
}
. This included the case wheren(x), d(x) are

linear,F is polyhedral andg(x) is a real–valued function defined onRm. Their
results guarantee the existence of a dual variableλ such that

min
x∈F

[
n(x)− δd(x) ] = max

λ>0
min
x∈X

[
n(x)− δd(x)+ λg(x)] (26)

when, for instance, (25) is a linear program andd(x) > 0. Furthermore, their ana-
lysis does not assume differentiability, thus it is valid for combinatorial problems.

For our subproblems (16), we consider the ratio constraints in the formg(x) =
ni(x)− ridi(x) for a fixed value ofri . Then, for example, the Lagrangian dual for
p1 is

max
λ>0

min
τx∈T

[
n1(x)− δd1(x)+ λ

(
n2(x)− r2d2(x)

)]
. (27)

Thus for some fixedλ > 0, we need to solve

Lp1(λ) = min
τx∈T

[(n1(x)+ λ (n2(x)− r2d2(x)))− δd1(x)] . (28)

This is the parametric version of the MRST problem with new problem coefficients
which we solve overδ using Newton’s method. By the duality results in Bitran and
Magnanti (1976), we knowLp1(λ) 6 z∗(p1) and the best lower bound is given by
L = maxλ>0Lp1(λ).

To maximize the Lagrangian dual, we adapted the Handler–Zang algorithm
which was originally used to solve the constrained shortest path problem. We
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substituted solution of the MRST problem based on (28) for each ofp1 andp2

where they required solution of a shortest path problem.
Briefly, their algorithm relies on Lagrangian relaxation of the side constraint

to solve a series of, in this case, MRST problems. Beginning with an estimate of
the optimal multiplier, the Handler–Zang procedure iteratively builds up the lower
envelope of the concave Lagrangian dual objective function until this function is
maximized. If a duality gap existed, they employed an enumeration procedure
which produced non-decreasing solution values with respect to the Lagrangian
objective function, thus closing the duality gap. We used the simple branch and
bound procedure of Aggarwal et al. (1982) to close any existing duality gap.

3.3. STALLING

In general, the algorithm can stall. At some iterationi, we could havevi andli both
feasible and lying on the same isovalue contourf iup thus causing the procedure to
cycle endlessly between these two points. What is required is to find a improved
upper bound so the iterations can progress.

Fortunately we can take advantage of the problem structure and invoke the
exchange heuristic outlined in Section 2.3 in the hopes of finding a better solution.
This heuristic only needs to run until an improved solution is found and, while
there is no guarantee that such a solution will be found, this approach worked well
in our experiments. If the heuristic step fails to produce a better upper bound, an
alternate method is available.

A general approach for re-starting the procedure with a new solution is ex-
plained in Falk and Palocsay (1992). Their approach gives rise to subproblems
with a side constraint having upperand lower bounds. These are hard constraints
in the combinatorial setting. Instead, we propose an alternate strategy that closely
resembles their approach but only requires subproblems with a single side con-
straint.

Consider a pointr− = (r−1 , r
−
2 ) lying strictly within the current triangle. This

has an upper boundf −up < f iup = (vi1 + vi2) = (li1 + li2). Consequently,r−1 >

li1 implies thatr−2 < li2, and r−2 > vi2 implies thatr−1 < vi1. This suggests that
systematic search of the interior of the current triangle will uncover this point if it
exists thus allowing the better upper bound to be used in restarting the procedure.
Our approach is to subdivide the rectangle defined by the three vertices of the
current triangle and the unlabeled point(vi1, l

i
2) along each of the axes ofR, as

follows.
Consider the two subproblems

ps1 : min
τx∈T

n1(x)/d1(x)

s.t. n2(x)/d2(x) 6 t2
and

ps2 : min
τx∈T

n2(x)/d2(x)

s.t. n1(x)/d1(x) 6 t1
with t1 = 1

2

(
ui11+ vi1

)
and t2 = 1

2

(
ui22+ li2

)
. The constraints are illustrated in

Figure 3.
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Figure 3. Subdividing the current triangle to overcome stalling.

Note that a feasible solution to each of these subproblems exists. Because there
may be points outside the current triangle which are feasible to these subproblems,
it is likely that the subproblems will solve at those points. Consider a point outside
the current triangler+ = (r+1 , r+2 ) and subproblemps2. If r+2 < r−2 , thenps2 solves
at this point with(r+1 + r+2 ) = f +up > f iup. But if a point r− exists, then we must
haver−1 < r+1 in which caseps1 will find it eventually. An analogous situation holds
in the case of subproblemps1.

If, at the current subdivision, the solution to both these subproblems fails to
produce an improved upper bound, then we can conclude that there are no feasible
points within the intersection ofn2(x)/d2(x) 6 t2 andn1(x)/d1(x) 6 t1. This
further allows us to conclude that a lower bound lies along the iso-value contour
defined byt1 + t2, thus we can taket = (t1 + t2) as a lower bound. Consequently,
the current solution must be withinε = (f iup− t)/t of being optimal. So, we con-
tinue the subdivision by moving both constraints half again the remaining distance
toward the pointsvi and li, respectively and solve the subproblems with the new
constraints. This process continues until we find an improved upper bound or until
the remaining gap falls below some pre-specified toleranceε in which case we stop
with anε–approximate solution.

If we recover an improved upper bound, we establish a new triangle using this
upper bound and the existing lower bound(ui11, u

i
22). The acute vertices of this

triangle will, in all likelihood, not correspond to a feasible solution. To re-establish
a feasible solution as a vertex of the triangle, we recompute the pointsli andvi

based on the new upper bound and solve the subproblemsp1 andp2. We then take
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the minimum of the upper bounds resulting from their solution as the point at which
to continue the iterations.

4. An Algorithm for the Two Ratio MST Problem

Putting the previous ideas together, we can now state the algorithm for finding an
MST when the objective function is the sum of two linear ratios. We start with an
initial upper and lower bound by first solving an (unconstrained) MRST for ratio
1 and ratio 2. Then we iteratively solve constrained MRST problems to narrow the
bounds checking for optimality using the sufficiency condition described in Section
3.1 if f iup > f

i
lo, or terminating when the bounds coincide. The superscripti is used

to index the iterations.

ALGORITHM 2-RATIO-MST:
Step 1. Set i ← 1 andα a predefined tolerance such thatα < 1. Find ui =

(ui11, u
i
22) using AlgorithmN from Figure 1. Computef ilo andf iup using

expressions (9) and (10). Iff ilo = f iup then stop, the optimal solution is
r∗ = f iup with the optimal spanning tree given by that associatedf iup.
Otherwise, set

li = (
li1, l

i
2

)← (
ui11, f

i
up− ui11

)
vi = (

vi1, v
i
2

)← (
f iup− ui22, u

i
22

)
and proceed to Step 2.

Step 2. If f ilo > f i−1
lo or f iup < f i−1

up then proceed to Step 3; Otherwise, go to Step
6.

Step 3. ComputeH(ui), H(li) andH(vi). If H(vi) = 0 andH(li) > 0 and
H(ui) > 0, then stop withr∗ = vi . Else, ifH(vi) > 0 andH(li) = 0
andH(ui) > 0, then stop withr∗ = li. The optimal objective function
value isr∗ = r∗1 + r∗2 , with the incidence vectorx∗ such that

n1(x
∗)

d1(x
∗)
= r∗1 and

n2(x
∗)

d2(x
∗)
= r∗2 .

Otherwise, proceed to Step 4.

Step 4. Seti ← i+1. Solve the following constrained MRST problems optimally:

ui11 ← minτx∈T n1(x)/d1(x)

s.t. n2(x)/d2(x) 6 li−1
2

and
ui22 ← minτx∈T n2(x)/d2(x)

s.t. n1(x)/d1(x) 6 vi−1
1

recalling that one of these is already solved. Set
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f ilo ← ui11+ ui22

f kup ← min
[
ui11+ ui12, u

i
21+ ui22

]
(cf. eqs ( 9) and (10) )

li ←
(
ui11, f

i
up− ui11

)
vi ←

(
f iup− ui22, u

i
22

)
.

Step 5. If f ilo = f iup then stop, the optimal solution isr∗ = f iup with the optimal
spanning tree given by that associatedf iup. Otherwise, return to Step 2.

Step 6. The algorithm has stalled. Execute the exchange procedure (cf. Section
2.3) terminating with an upper boundz. If z < f iup then setf iup← z and
go to Step 2, otherwise go to Step 7.

Step 7. The algorithm remains stalled. Set
ũ11 ← ui11

ũ22 ← ui22

t1 ← 1

2

(̃
u11+ vi1

)
t2 ← 1

2

(̃
u22+ li2

)
and solve the two constrained MRST problems of Step 4 with right-hand
sidest1 andt2 to yield an upper boundf sup. If f sup < f

i
up then return to Step

2. If ε > α (cf. Section 3), then set

t1 ← 1

2
(t1+ vi1)

t2 ← 1

2
(t2+ li2)

and repeat this step; otherwise stop with the approximate solutionf sup.
Note thatanyupper bound will suffice at the start of the algorithm. In particular,

the simple exchange procedure of Section 2.3 could be used to improve the upper
bound of Step 2 and decrease the number of constrained MST problems requiring
solution.

4.1. EXAMPLE PROBLEM

The following problem will illustrate the algorithm and was adapted from the ex-
ample network in Handler and Zang and is shown in Figure 4. The cost and weights
for each edge were chosen such that the first ratio was negatively correlated with
the second ratio. This was intended to produce initial upper and lower bounds that
were far apart.

To begin, the MRSTs with respect to ratio 1 and ratio 2 are found yielding two
feasible solutions:

(u1
11, u

1
12) = (3.56,28.20)

(u1
21, u

1
22) = (24.74,3.46)
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Figure 4. Example 10-node network. Bold lines depict the optimal tree.

with an initial upper boundf 1
up = min [31.76,28.20]= 28.20 and an initial lower

bound off 1
lo = 7.02. The sufficient condition for optimality is not satisfied and the

lower and upper bounds are not equal, so the algorithm continues. The vertices of
the triangle are the points

(u1
11, u

1
22) = (3.56,3.46)

(l11, l
1
2) = (3.56,24.63)

(v1
1, v

1
2) = (24.74,3.46).

Note that problemp2does not need to be solved sincev is feasible. Problemp1,
the constrained MRST, with right-hand side 24.63 is solved yielding a new upper
boundf 1

up = 21.22 and a new lower bound off 0
lo = 7.09. The vertices of the

triangle are now

(u2
11, u

2
22) = (3.63,3.46)

(l21, l
2
2) = (3.63,17.58)

(v2
1, v

2
2) = (17.75,3.46).

The algorithm continues in this fashion (without stalling) and terminates after
24 complete iterations of the algorithm with the globally optimal solution (8.286,
5.977). Figure 5 shows the convergence of the procedure inR-space. For clarity,
the entireR-space is not enumerated and only a subset of the iterations are repre-
sented. The largest and smallest triangles depict the initial upper bound and the
final triangle containing the single optimal solution point.
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Figure 5. Convergence inR-space for the 10-node example.

It should be obvious that a better starting point, either lower upper bounds or
higher lower bounds, will reduce the number of iterations. In the example problem,
we started the exchange procedure of Section 2.3 with the tree corresponding to the
initial upper bound,f 1

up and the exchange procedure terminated with the optimal
solution. After 5 iterations, the sufficient conditions for optimality were met and
the algorithm terminated with the globally optimal solution.

4.2. SPEEDING UP THE ALGORITHM

During the course of our computational experiments a second heuristic step, one
based on the sufficient condition for optimality, revealed itself. The appeal of this
heuristic is that it does not depend on the problem structure and can be easily
incorporated into the above algorithm with little additional computational effort.

While checking the current solution for optimality using the sufficienct condi-
tion, we supply the current lower boundui as well asvi andli as arguments toH(·).
Computing the value ofH(·) requires the solution of an MST, thus it will return an
upper bound. We discovered that one of these upper bounds was often superior
to the incumbent solution. If there has been improvement in the upper bound,
we replace the incumbent upper bound with this new upper bound. This further
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shrinks the solution space thus reducing the number of iterations required to find
the globally optimal solution. For instance, on the example problem we computed
H(ui) using the initial lower bound and it returned an upper bound of 15.4 which
is within 8% of the optimal solution. On the second iteration, this checking further
improved the upper bound to the value of the optimal solution. At the 4th iteration,
the sufficient condition for optimality identified this upper bound as the globally
optimal solution.

To incorporate this into the above algorithm, we replace the instruction to pro-
ceed to Step 4 in Step 3. We call this variant of the algorithm, HeuristicP .

Check the upper bound returned as a result of computingH(ui),H(vi),H(li).
If the upper bound resulting from these computations is superior tof iup then
setf iup equal to the improved upper bound. Recomputeli andvi using the
expressions in Step 4 and return Step 4.

4.3. COMPUTATIONAL RESULTS

The algorithm was implemented in C++ to run in the DOS/ix86 environment. We
used a heap implementation of Kruskal’s algorithm for the MST computations. The
goals in our computational experiment were the following.

– Gain an understanding of how quickly the basic algorithm converges to the
optimal solution;

– Determine how effective the swapping heuristic performed in generating high
quality upper bounds thus improving the speed of convergence;

– Examine the effectivness of HeuristicP in improving the speed of conver-
gence.

As our goal here is to gain an understanding of how this algorithm behaves, our
computational experiments are modest, yet sufficiently expansive for purposes of
this study.

For our test set, we choose randomly generated complete networks with up to
50 nodes. We choose complete networks as this generates anR-space of maximum
size. Ratio values for each arc were generated uniformly at random with the two
ratios for each arc negatively correlated. This tended to generate upper and lower
bounds relatively far apart. Since the bulk of the computational effort is in solving
the MRST, our measure of computational effort is the number of spanning tree
problems solved. We also report the number of iterations taken by the algorithm.

In looking at the table in Figure 6, it is clear that for even small problems the
computational effort is large, with the basic algorithm taking many small but stead-
ily improving steps. This is also evident in the example problems reported in Falk
and Palocsay (1992). Two factors seem to affect the speed of convergence. First
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No Heuristic Start HeuristicS HeuristicP

Nodes Iters MSTs Iters MSTs Iters MSTs

5 3 24 2 8 2 8

10 17 190 6 78 13 149

15 21 197 8 81 16 149

25 31 356 15 179 22 264

50 58 741 28 379 44 557

Figure 6. Computational Results on Complete Networks.

(and obviously), the size of the initial gap between the upper and lower bounds.
For our problems, this gap was several orders of magnitude, thus requiring many
iterations to close in on the optimal solution. Notice that using the results of the
swapping heuristic as the starting point approximately halved the computational
effort. In fact, for this test set, the heuristic always produced the optimal solution.
Second, even if the initial upper bound corresponds to the optimal solution, the
algorithm must close the remaining gap by raising the lower bound. Heuristic
P , though not as effective as the swapping heuristic, produced good results by
reducing the computational effort by about 25% on average. None of the problems
stalled and the sufficient condition for optimality did not terminate any of the
problems early.

In general, we observed that the iterates produced by the algorithm trace the
lower envelope of the convex hull ofR. Thus, the more points there are on the
lower envelope of the convex hull, the more iterations required. Solving the con-
strained subproblems posed no problems. Using the best upper bound branch-
ing strategy as recommended in Aggarwal et al. (1982), the optimal solution was
always resolved at the first level of the branch and bound tree.

5. Summary

We have presented an algorithm for solving the minimum spanning tree problem
when the objective function is the sum of two linear ratios. By optimally solving
the NP-hard subproblems the algorithm finds a globally optimal solution. The
swapping heuristic (HeuristicS) was shown to be effective in producing good
upper bounds thus reducing the computational effort as was HeuristicP . The
basic algorithm with the latter heuristic step should be effective in solving other
combinatorial optimzation problems that admit a polynomial time algorithm.
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